Forum — Daily Challenge
    • Categories
    • Recent
    • Tags
    • Popular
    • Users
    • Groups
    • Login

    || symbol (+Stylus pen)

    Module 3 Day 3 Challenge Part 1
    3
    3
    12
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • RZ923R
      RZ923 M0★ M2★ M3★ M4★ M5
      last edited by RZ923

      BDDF245E-EE8C-4267-83FB-718035172B5C.jpeg
      The “| |” I just learnt means “Set” but it looks the same as another symbol that means “Absolute value”. Are there any connections? Why did mathematicians choose a same pair of symbols to mean 2 things?
      Also Prof Loh was holding his stylus pen 🖊 when he was pointing towards the |A| 😛

      Very Interesting

      debbieD 1 Reply Last reply Reply Quote 2
      • divinedolphinD
        divinedolphin M0★ M1★ M2★ M3★ M4★ M5★ M6★
        last edited by divinedolphin

        I don't know, but maybe for the same reason that ∆=discriminant=change/difference=triangle shape? (That reason is, mathematicians felt like making life harder for us. (Or because they ran out of symbols to use.))

        👕👕👕👕👕👕👕👕👕👕🍌🍌🍌🍌🍌🍌🍌🍌🍌🍌

        1 Reply Last reply Reply Quote 2
        • debbieD
          debbie ADMIN M0★ M1 M5 @RZ923
          last edited by debbie

          @RZ923 ➡ ➡ Whenever you see the absolute value symbol written next to the name of a set, it refers to the number
          of elements in that set. It doesn't technically mean the set itself, but this measure of how large the set is.
           

          $$ \text{ Example: } A = \{2, 3, 5, 7, 11\} $$

          $$ |A| = 5 $$

          $$ \text{ Example: } B = \{2, 4, 6, 8\} $$

          $$ |A| = 4 $$

           

          If you write out \(A\) with no vertical bars, then it refers to the set with the elements listed. It's similar to how when I refer to a person's name, like @RZ923, I'm referring to the person, not some numerical characteristic like age or Mock AMC 8 test score 🙂 or anything else.

           
           

          Let's look at the comparison between the set name with the vertical bars and the set name without the vertical bars:

          If I were to write the PIE formula for sets \(A\) and \(B,\) but I didn't use the vertical bars, then what would that mean?

          For example:

          $$ A \cup B = A + B - A \cap B $$

          Technically, this really means the following:

          $$ \{2, 3, 4, 5, 6, 7, 8, 11\} = \{2, 3, 5, 7, 11\} + \{2, 4, 6, 8\} - \{2\} $$

           
           

          See the difference when you add the vertical bars? ❓ ❓

           

          $$\begin{aligned} \textcolor{red}{ |A \cup B|} &= \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{blue}{|A|} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } +\text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }\textcolor{purple}{|B|} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }- \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }\textcolor{green}{|A \cap B|} \\ \textcolor{red}{\#\text{ elements in } A \cup B } &= \textcolor{blue}{\# \text{ elements in } A} + \textcolor{purple}{\# \text{ elements in } B} - \textcolor{green}{\# \text{ elements in } A \cap B} \\ \textcolor{red}{8} \text{ } \text{ } \text{ } \text{ } \text{ } &= \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }\textcolor{blue}{5} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }+ \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }\textcolor{purple}{4} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }- \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }\textcolor{green}{1} \\ \end{aligned} $$

           
           

          $$ \text{ Set A } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ Set B } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } A \cap B \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } A \cup B \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } $$

          M3W1D2-y-part-2-forum-inclusion-exclusion.png

          We usually use the vertical bars along with the set names when we're using PIE because we are trying to figure out how many ways or elements there are.

          👍

          The 🦑 agrees!

          1 Reply Last reply Reply Quote 2

          • 1 / 1
          • First post
            Last post
          Daily Challenge | Terms | COPPA