Forum — Daily Challenge
    • Categories
    • Recent
    • Tags
    • Popular
    • Users
    • Groups
    • Login

    Question: Why divide by {some integer} .5 at 8:36?

    Module 4 Day 5 Challenge Part 4
    2
    3
    26
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • The Blade DancerT
      The Blade Dancer M0★ M1★ M2★ M3★ M4 M5
      last edited by debbie

      Why divide by {some integer} .5 at 8:36? I get how if you calculate it, the median will be {some integer} .5, but why should we divide by it?

      The Blade Dancer
      League of Legends, Valorant: Harlem Charades (#NA1)
      Discord: Change nickname if gay#7585

      debbieD 2 Replies Last reply Reply Quote 3
      • debbieD
        debbie ADMIN M0★ M1 M5 @The Blade Dancer
        last edited by

        @The-Blade-Dancer I'm very sorry for the delay, but I will get to this tomorrow morning 🙂

        1 Reply Last reply Reply Quote 1
        • debbieD
          debbie ADMIN M0★ M1 M5 @The Blade Dancer
          last edited by

          @The-Blade-Dancer 🔍 🔍 I'm looking for the place in the video where you are mentioning about the dividing by {some integer}.5.... I can't seem to find Prof. Loh saying this exact line... 😕 😖 He does talk about multiplying \(30\) with {some integer}.5, and maybe I'll backtrack a bit to review what he said. 🗂

          In the video at around 8:36, Prof. Loh is showing us an expression for the sum of \(30\) consecutive numbers.

          temp-20201018.png

          "Whenever you have an even number of consecutive integers, then the evenness and oddness of the first and last are different."

          You can see that this is true by listing out some sample consecutive sequences with an even number of terms, like this:

          \(\textcolor{red}{1 } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{blue}{2} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{red}{3 } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{blue}{4} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{red}{5 } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{blue}{6} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{red}{7 } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{blue}{8} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{red}{9 } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{blue}{10} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{red}{11 } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{blue}{12} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{red}{13 } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \textcolor{blue}{14} \text{ } \text{ } \text{ }\)

          \( \textcolor{red}{\text{odd }} \text{ } \text{ } \text{ } \textcolor{blue}{\text{even}} \text{ } \text{ } \text{ } \textcolor{red}{\text{odd }} \text{ } \text{ } \text{ } \textcolor{blue}{\text{even}} \text{ } \text{ } \text{ }\textcolor{red}{\text{odd }} \text{ } \text{ } \text{ } \textcolor{blue}{\text{even}} \text{ } \text{ } \text{ }\textcolor{red}{\text{odd }} \text{ } \text{ } \text{ } \textcolor{blue}{\text{even}} \text{ } \text{ } \text{ }\textcolor{red}{\text{odd }} \text{ } \text{ } \text{ } \textcolor{blue}{\text{even}} \text{ } \text{ } \text{ } \textcolor{red}{\text{odd }} \text{ } \text{ } \text{ } \textcolor{blue}{\text{even}} \text{ } \text{ } \text{ }\textcolor{red}{\text{odd }} \text{ } \text{ } \text{ } \textcolor{blue}{\text{even}} \text{ } \text{ } \text{ }\)

          Therefore, the sum of the \(\textcolor{red}{\text{first}}\) and \(\textcolor{blue}{\text{last}}\) will always be odd, and the average will always be a whole number plus \(0.5.\)

          (Note: You mentioned the median, and it happens to be true that for a sequence where the terms are equally spaced apart (found by adding the same number to a term to get the next term), the median and the average/mean is the same. In general, though, for a any old sequence, we can't interchange the words median and mean. The median is the middle number if you arrange the numbers from smallest to largest. For example, for the first eleven terms of the Fibonacci sequence, the median is \(\textcolor{red}{8},\) but the mean is \( \frac{\textcolor{red}{1 + 89}}{2} = \textcolor{red}{45}.)\)

          \( \textcolor{red}{1 \text{ }\text{ }\text{ }\text{ } \text{ }\text{ }\text{ } 1 \text{ }\text{ }\text{ }\text{ } \text{ } \text{ }2 \text{ }\text{ }\text{ }\text{ }\text{ } \text{ } 3 \text{ }\text{ }\text{ }\text{ }\text{ } \text{ } \text{ }\text{ }5 \text{ }\text{ }\text{ }\text{ }\text{ } \text{ } \text{ }\text{ }8 \text{ }\text{ }\text{ }\text{ }\text{ } \text{ } \text{ }\text{ }13 \text{ }\text{ }\text{ }\text{ } \text{ }\text{ }\text{ } 21 \text{ }\text{ }\text{ }\text{ } \text{ } \text{ }\text{ }34 \text{ }\text{ }\text{ }\text{ } \text{ } \text{ }\text{ }\text{ }\text{ }55 \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } 89 }\)

          "What happens if I multiply \(30\) by something ending in \(0.5?\) The easiest way to think about this is to think about what \(xxx.5\) means as a fraction."

          temp-20201018-2.png

          Prof. Loh's next step is to replace the average by the fraction \(\frac{\text{odd}}{2},\) which gives us

          $$ 30 \times \frac{\text{odd}}{2} $$

          $$ 15 \times \text{ odd} $$

          It is from here that we can start to look at the answer choices to decide which of them could be the possible sum of the \(30\) consecutive integers. It's the one that is the multiple of \(15!\) 🎉

          🙂


          1 Reply Last reply Reply Quote 4

          • 1 / 1
          • First post
            Last post
          Daily Challenge | Terms | COPPA