Forum — Daily Challenge
    • Categories
    • Recent
    • Tags
    • Popular
    • Users
    • Groups
    • Login

    How do we know which angles inscribe which? Do they directly open up to the central angle or something?

    Module 2 Day 6 Your Turn Part 1
    2
    2
    56
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • The Blade DancerT
      The Blade Dancer M0★ M1★ M2★ M3★ M4 M5
      last edited by debbie

      Module 2 Week 2 Day 6 Your Turn Explanation Part 1

      How do we know which angles inscribe which? Do they directly open up to the central angle or something?

      The Blade Dancer
      League of Legends, Valorant: Harlem Charades (#NA1)
      Discord: Change nickname if gay#7585

      debbieD 1 Reply Last reply Reply Quote 2
      • debbieD
        debbie ADMIN M0★ M1 M5 @The Blade Dancer
        last edited by debbie

        @The-Rogue-Blade You can do a shortcut in your head and not worry about the central angle, since the central angle is always the same measure as the arc that it opens up to. So to find the measure of the \( \textcolor{purple}{\text{ angle, }}\) just find the arc that it opens up to, and take half of it. That's all you do: look for the arc.

        Thus \( \textcolor{purple}{\text{ angle } \frac{a}{2}}\) is half of the measure of \( \textcolor{purple}{\text{ purple arc a,}}\) and \( \textcolor{orange}{\text{ yellow arc b}}\) is half of the measure of \( \textcolor{orange}{\text{ yellow arc b.}}\)

        When I read your question, this made me think back to the proof of the Inscribed Angle Theorem which, at the time, only had the special case of an angle with one side as the diameter of the circle. So I've added to that proof by giving an additional visual proof of the Inscribed Angle Theorem for general angles, including angles with a tangent line, like the right-hand \(\textcolor{orange}{\text{ yellow }}\) angle in the diagram.

         

        M2W2D6-y-part-1-tangent-secant-solution-20-percent.png
         

        Please check it out! 🙂

        I hope the post with the proof of the Inscribed Angle Theorem will make it more clear why the \(\textcolor{purple}{\text{ purple }}\) angle has measure \( \textcolor{purple}{\frac{a}{2}}\) and both \(\textcolor{orange}{\text{ yellow }}\) angles have measure \(\textcolor{orange}{\frac{b}{2}}\)!

        Additionally, this other forum post has a visualization for the formula of an inscribed angle as well as some examples of inscribed angles.

        1 Reply Last reply Reply Quote 1

        • 1 / 1
        • First post
          Last post
        Daily Challenge | Terms | COPPA