• Categories
  • Recent
  • Tags
  • Popular
  • Users
  • Groups
  • Login
Forum — Daily Challenge
  • Categories
  • Recent
  • Tags
  • Popular
  • Users
  • Groups
  • Login

There's a lot of ratio talk here. What is the importance of all these ratios?

Module 2 Day 13 Your Turn Part 2
2
2
32
Loading More Posts
  • Oldest to Newest
  • Newest to Oldest
  • Most Votes
Reply
  • Reply as topic
Log in to reply
This topic has been deleted. Only users with topic management privileges can see it.
  • T
    The Blade Dancer M0★ M1★ M2★ M3★ M4 M5
    last edited by debbie May 31, 2020, 3:18 PM May 29, 2020, 8:24 PM

    Module 2 Week 3 Day 12 Your Turn Part 2

    There's a lot of ratio talk here. What is the importance of all these ratios?

    (Timestamp 4:40) I thought subtraction isn't commutative...

    The Blade Dancer
    League of Legends, Valorant: Harlem Charades (#NA1)
    Discord: Change nickname if gay#7585

    D 1 Reply Last reply May 30, 2020, 10:20 PM Reply Quote 2
    • D
      debbie ADMIN M0★ M1 M5 @The Blade Dancer
      last edited by debbie May 30, 2020, 10:34 PM May 30, 2020, 10:20 PM

      @TSS-Graviser Hi again!

      Ratios are good way of comparing one number with another one.

      Let's start with two numbers. The bigger number represents an older sister 👧 and the smaller number represents a little brother 👦. When mother 👩 makes cookies, 🍪 older sister eats 444 🍪 cookies but the little brother eats only 222 :cookies. How would you compare the amount of food that they each eat?

      Would you say that the older sister 👧 eats 222 more cookies 🍪 than the little brother 👦?
      Should the older sister 👧 always eat 222 more of whatever food there is, compared with her little brother 👦 ?

       
       
       

      But then what if mother 👩 serves rice 🍚 -- should the older sister 👧 have exactly 111 more grain of rice compared with the little brother 👦 ?

      No, that wouldn't make sense! If the older sister 👧 got just 111 more grain of rice 🍚 compared with the little brother 👦 , then she would be eating almost the same amount of rice as the little brother, 👦 , because the little brother might eat 1,0001,0001,000 grains of rice (a cup of cooked rice has about 3,0003,0003,000 grains of rice in it. Then the older sister would only get 1,0011,0011,001 grains of rice.

      What if the little brother 👦 eats 12\frac{1}{2}21​ of a hamburger 🍔 ? Would that mean that the older sister 👧 should eat 2+12=2122 + \frac{1}{2} = 2 \frac{1}{2}2+21​=221​ hamburgers?

      Or, suppose the little brother 👦 can eat 112\frac{1}{12}121​ of a birthday cake 🍰 Does that mean that the older sister can eat 21122 \frac{1}{12}2121​ birthday cakes 🍰 ?

      This is why we use ratios, which describe how big numbers are compared with each other using multiplication and division rather than addition and subtraction.

       
       

      The correct thing is to say that in order to get the older sister's 👧 serving, you take 12\frac{1}{2}21​ of the little brother's 👦 amount and add it to what the little brother 👦 eats. So if the little brother 👦 eats 111 bowl of rice 🍚 , the older sister eats 1+121 + \frac{1}{2}1+21​ bowls of rice 🍚 . If the little brother 👦 eats 12\frac{1}{2}21​ of a hamburger 🍔 , the older sister 👧 eats 12+14=34\frac{1}{2} + \frac{1}{4} = \frac{3}{4}21​+41​=43​ of a hamburger 🍔 . If the little brothe 👦 eats 112\frac{1}{12}121​ of a birthday cake 🍰 , the older sister 👧 eats 112+124=324=18\frac{1}{12} + \frac{1}{24} = \frac{3}{24} = \frac{1}{8}121​+241​=243​=81​ of a birthday cake 🍰 .

      Another way to compare the older sister 👧 and little brother 👦 is to say that the older sister 👧 eats 1.51.51.5 times as much as the little brother. This is because she eats one-and-a-half of the little brother's 👦 serving.

      This is why we use ratios!

      We can say that the ratio between the little brother's 👦 serving and the older sisters's 👧 serving is 1 to 1.5,1 \text{ to } 1.5,1 to 1.5, or 1:1.5.1:1.5.1:1.5. If you multiply both numbers by 2,2,2, you get 2:3,2:3,2:3, which is the same ratio. As you get more experience with doing math problems, you might prefer using ratios to compare numbers, because it's easier to calculate things.

       
       

      For your other question, Prof. Loh isn't actually switching around the subtraction (like you might switch around the terms in 3+4=4+3),3 + 4 = 4 + 3),3+4=4+3), but he is simplifying

      233+2 \frac{2 \sqrt{3}}{\sqrt{3} + 2} 3​+223​​

      which is the same thing as

      232+3. \frac{2 \sqrt{3}}{2 + \sqrt{3} }. 2+3​23​​.

      He wants to "rationalize the denominator," so he multiplies the whole thing by a fraction equaling 111. This fraction is 2−32−3\frac{2 - \sqrt{3}}{2 - \sqrt{3}}2−3​2−3​​.

      It's the same thing as what you do when you multiply a fraction by the same thing to the top and bottom in order to get a different denominator:

      27=27×33=621 \frac{2}{7} = \frac{2}{7} \times \frac{3}{3} = \frac{6}{21}72​=72​×33​=216​

      The reason he does this is so that we get a nice difference of squares in the denominator, which effectively gets rid of the square root.

      (a+b)(a−b)=a2−b2 (a+b)(a-b) = a^2 - b^2 (a+b)(a−b)=a2−b2

      (2+3)(2−3)=22−32 (2 + \sqrt{3} )(2 - \sqrt{3}) = 2^2 - \sqrt{3}^2 (2+3​)(2−3​)=22−3​2

      Then, the bottom just becomes

      4−3 4 - 3 4−3

      which equals 1!1!1!

      1 Reply Last reply Reply Quote 1

      • 1 / 1
      1 / 1
      • First post
        2/2
        Last post
      Daily Challenge | Terms | COPPA